AGEZ2HIE: TRANSFER LEARNING FROM BRAIN-AGE
TO PREDICTING NEUROCOGNITIVE OUTCOME Jﬂ.-

21981 2023

2025 IEEE International Symposium on Biomedical Imaging

April 14-17, 2025 | Houston, TX, USA

e I3 {=1 g\ [« W1571077095

FOR INFANT BRAIN INJURY P

Rina Bao, Sheng He, Ellen Grant, Yangming Ou

Boston Children’s Hospital, Harvard Medical School

AGE2HIE: transfer learning

across task, modality, age, health condition

Target Task—prognosis in HIE disorder (0-14 days)

Benchmark Task—age estimation in normal brain MRIs (0-97 years)
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INTRODRUCTION Methodology

* We have assembled the first and largest public dataset, however it contains only 156
cases with 2-year neurocognitive outcomes.

 We have collected 8,859 normal brain MRIs with 0-97 years of age that are available for
brain age estimation using deep learning models.

* Hypoxic-Ischemic Encephalopathy (HIE) affects 1-5
/1,000 newborns, with 30% to 50% of cases resulting
in adverse neurocognitive outcomes. However,
these outcomes can only be reliably assessed as
early as age 2.

 Early and accurate prediction
neurocognitive outcomes

of HIE-related

using deep learning Table 1. Accuracy without (x) vs with (v') transferring age-pretrained model to HIE outcome prediction.

models is critical for improving clinical decision- 2 | Setting Transfer | Accuracy (%) | Sensitivity (%) | Specificity (%)
making, gu|d|ng treatment decisions and assessing E E Training on MGH (N=72) X 72.28+17.92 70.00429.15 71.21118.26
: o Testing on MGH 74.854+9.21 74.76+21.27 75.50+17.51
novel therapies. S % ' 'g
models for this purpose is the scarcity of large, é Testing on BCH v 54.38+12.19 66.92+23.46 46.05+20.07
annotated HIE datasets. % | Training on MGH+BCH (N=156) x 68.66+8.5 78.82+12.95 | 66.52+16.27
Testing on MGH+BCH v 70.45+9.1 77.35+£14.28 66.83+15.16
Results Table 2. Generality without (x) vs with (v') transferring age-pretrained model to HIE outcome prediction.
* AGE2HIE with transfer learning improves accuracy. 5 o | Oeting Transfer | Accuracy (%) | Sensitivity(%) | Specificity(%)
» AGE2HIE with transfer learning enhances generality. g % | Traming in MGH (N=72) X 57.14+18.99 | 90.00+20.00 | 49.36+19.78
* Existing studies primarily rely on private datasets E % “csting In BC.1 (N=84) d 02273919 84291393 | 52211756
with limited sample sizes. Our results from a two- = Tra:i{]jng. in BCH (N=84) X 72.50£11.27 60.00£13.33 75.88+t18.69
site dataset (N=156) demonstrated a sensitivity of Testing in MGH (N=72) v 77.2148.55 64.43+11.27 82.57+£14.92
0.7735 and specificity of 0.6683.
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